If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+10000x-10000=0
a = 64; b = 10000; c = -10000;
Δ = b2-4ac
Δ = 100002-4·64·(-10000)
Δ = 102560000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{102560000}=\sqrt{160000*641}=\sqrt{160000}*\sqrt{641}=400\sqrt{641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10000)-400\sqrt{641}}{2*64}=\frac{-10000-400\sqrt{641}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10000)+400\sqrt{641}}{2*64}=\frac{-10000+400\sqrt{641}}{128} $
| -6x+7x-9x=0 | | -12=3x/2 | | 7x+11=x | | a^2-11a-1=28-a | | 7x-11=x | | 6(3x-2)=10x+8 | | |4n+3|=34 | | 30+90+(x+70)=180 | | 2x+9/4=2x | | 5(x-3)=7x-20-2x+5 | | 8(2x-2)=7(3x+2 | | 4x+18=11x | | 3x=2=-55 | | 12=g=56 | | 13y-9y=13 | | 1-(y+10)=-7 | | 15x+42=5x+3 | | 90+(2x-11)+(2x+27)=180 | | 0x+3=9x-2 | | 5x+25=30+3x | | 2/3x+4/5x=7 | | 13.51+0.11(x+3)=14.01-0.15x | | 5(t)=4.5(t)+2.2 | | 615.14=2(3.14)r | | -2m—18m+-12m+9m-12m=5 | | 5x+25=30.76+3x | | 8-1(3y+2=-3(1-3y) | | 8x-4=-15x+13 | | 8x-4=15x+13 | | 3h-6h-10=10-5h | | 4r-3=9r+12= | | 5-3y+7=3 |